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Chameleon-Llike theories

Consider theories with the Einstein-frame action

S= / dAX\/__g(Lgrav + Lem) + Smatter[Qz(d’)gyv],
Mél 1 v
Lgrav = T(R - a,u¢a'u¢) - V(¢)’ Lem = _Ze(qb)Fvay .

Matter and photon couplings are, respectively,

Pn(@) = (log Q) g, Py(¢) = (loge)¢.



Imprints in the hydrogen spectrum

- Chameleons cause shifts in the energy spectrum of atoms.

[Brax and Burrage, 2011]
- Contributions to gross and fine structure are known.

+ Can put (weak) constraints on B, and combination B, f,.



Why study hydrogen ... again?

Recent progress in our understanding of this simple system:

1. New fine-structure terms
2. Curved backgrounds / unscreened environments

3. Compare Einstein and Jordan frames

Not in this talk: Hyperfine structure, but can be done. [wong and Davis, 2017]



1. Fine structure



Coupling the chameleon to the electron

Semiclassical approach: Quantize electron y coupled to classical
fields {g,y, ¢, A} due to nucleus.

Electron y satisfies the Jordan-frame Dirac equation,
[iy?e; (9, + wy + ieAy) — me| w = 0.

Chameleon couples to the electron via:

1. Vierbein eﬁ and spin connection wy;
2. Inducing corrections to A, through &(¢).



Corrections to the Coulomb field

In static case with B = 0, Maxwell equations d,(¢F*’) = 0 become
V-D:=V-(¢E)=0, VXE=0.

From spherical symmetry, also have VXD = Ve X E = 0.

Exact solution to D with boundary conditions (charge Ze at origin) is

ID| = Ze
4’
Then easily get
|D| Ze
|E| = ~ (1= Bydp+...).

" e(g)  hme(po)r?



Chameleon profile

Chameleon profile can be solved perturbatively. Let ¢ = ¢ + 5¢ to

get
2Gmy GZa

r Yooz o

6¢ = ~Pm

« Linear regime valid because nucleus is light enough
« Assumed m; > Bohr radius
+ Have rescaled Q%(¢9)G — G and a/e(¢) — a

« Coupling constants 8 = B(¢o)

In limit By, > 1, can ignore Newtonian potential, so

Guv = (+ zﬂmaqb)’],uv-



Fine structure corrections

The perturbation Hamiltonian is

3 .
SH = y°mofnb¢ + eSA, + EVOV’(—id)ﬁmé‘qﬁ-

Ignore for now
First two terms give, explicitly,

2Gm.my GZ?am GZamy ,GZ%a?
L e—ﬂmﬁy = B

New; comes from §Aq
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Fine structure corrections (cont'd.)

ZGmemN GZ?am, GZamy GZa?
8H > —y° B ———— ,Bmﬁy o — BmBy 2 ,3}% or3

+ 3rd term is larger than 2nd by factor of ~ 2my/m,. Dominates
corrections to the Lamb shift.

« Inclusion of 8A, effect gives a ,35 term, so now can constraint 3,
independently.



Fine structure corrections (cont'd.)

logioBm < 13.4
logip By < 19.0
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2. Curved backgrounds




Curved backgrounds

Pick Fermi coordinates x* with nucleus fixed at x' = 0. Background is
va(X) = Nuv — 5258 2aiXi + O(rz),
$(x) = go + X +0().

Could have included quadratic terms (tidal forces).

[Done for GR by Parker, 1980; Parker and Pimentel, 1982]

Solve Maxwell equations perturbatively in this spacetime to get

Ay = Af,o) + AA;,(G,', ¢,)

Adiabatic approximation: Atom sees {a;, ¢} as time-independent.



Curved backgrounds (con

At first order, can ignore mixing between curved background terms
and singular terms due to nucleus.

H=H, + 6H + AH.
N—— N——

1/r" terms from earlier  Curved bg. effects



Acceleration and electric correction

. 'x"
AH D y’meaix' + ,ByZan—' + (subleading terms « a)
r

- 0dd-parity terms, analagous to Stark effect.

+ Washed out due to larger “QED corrections” (e.g. Lamb shift) that
lift needed degeneracies between opposite-parity states.

« To see this effect, need
ZBy|pil > 10Pge, or a>10"gg.

(c.f. neutron stars have surface gravities ~ 10'gg)



3. Einstein or Jordan frame?




A tale of two theories

We found a chameleon-spin interaction
3 0 i
5Hspin 2 Ey Y (_’ai)ﬂm5¢

in the Jordan frame.

(8Hspin) = 0 for spherically symmetric 6¢ [adkins, 20081, but in general
nonvanishing, e.g. by including magnetic dipole contribution to §¢.

Such a term does not emerge in the Einstein frame: Is electron theory
frame-dependent?



To canonically normalize or not?

The Dirac action in the Jordan frame is
S= /dl'X\/—_gl,T/ (ig"Dy — me) y.
Write g,y = Q?§,y to get
= /d"x\/—_g§23z/7 (i#' Dy — Qme + 2i# 9, log Q) .

Extra term is exactly responsible for §Hspin. Canceled by canonical
normalization: Let 7 = Q~3/2y to get

S= /d‘*x\/——gy:/(ié"f)y - Qme)y.



Matter of choice

« Electron observables are sensitive to field redefinitions,
especially in a perturbative, semiclassical approach.

- Achoice is required: either y is the electron and ¥ = Q /%y is a
composite electron-chameleon degree of freedom, or vice versa.

+ w seems more natural, but i certainly easier.



What does hydrogen teach us about
modified gravity?




Conclusions

1. More complete picture of the hydrogen spectrum in
chameleon-like gravity.

2. Uncompetitive constraints: log,, B < 13.4 and log,, By < 19.0.

3. £(¢) causes the vacuum to behave like a dielectric which induces
corrections 6A,. These must be taken into account as they can
sometimes dominate.

4. Careful definition of particles needed.

Thank you for listening!
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